Abstract

Thermal treatment of the ReIII hydride complex [ReH(η5-C6H7)(η6-C6H6)]+ in CH3CN results in the formation of [Re(η6-C6H6)(NCCH3)3]+. This semi-solvated complex is remarkably stable under an ambient atmosphere and exhibits a fast CH3CN self-exchange, which facilitates substitution reactions. The CH3CN ligands are replaced by σ-donating phosphines such as trimethyl phosphine (PMe3), triphenyl phosphine (PPh3), or the bidentate 1,2-bis(diphenylphosphino)ethane (dppe) to afford [Re(η6-C6H6)(NCCH3)3-x(PR3)x]+ (if R = Me, then x = 2; if R = Ph, then x = 1 or 2) or [Re(η6-C6H6)(dppe)(NCCH3)]+, respectively. [Re(η6-C6H6)(NCCH3)3]+ also reacts with π-acceptors such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), or CO (1 atm) to give [Re(η6-C6H6)(L)(NCCH3)]+ (L = bipy or phen) and [Re(η6-C6H6)(CO)(NCCH3)2]+, respectively. The latter does not show any signs of decomposition after being exposed to an ambient atmosphere for multiple days. Additionally, [Re(η6-C6H6)(NCCH3)3]+ reacts with π-donors such as the dienes 2,3-dimethyl-1,3-butadiene (DMBD), norbornadiene (NBD), or 1,5-cyclooctadiene (COD) to give [Re(η6-C6H6)(η4-diene)(NCCH3)]+ (diene = DMBD, NBD, and COD). All three complexes are extremely stable and do not decompose during purification by preparative high-performance liquid chromatography (aqueous acidic gradient). In the presence of 18-crown-6, [Re(η6-C6H6)(NCCH3)3]+ reacts with lithium cyclopentadienyl to give the sandwich complex [Re(η5-C5H5)(η6-C6H6)]. Loss of the coordinated benzene was observed when treating [Re(η6-C6H6)(NCCH3)3]+ with diphenylacetylene (PhC≡CPh), yielding the tetra-coordinated [Re(NCCH3)(η2-PhC≡CPh)3]+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.