Abstract

Current systems for exploring scholarly data exhibit a number of shortcomings in their ability to facilitate the identification of research trends and identify 'interesting' connections between researchers. To address these issues we have developed Rexplore, a novel system which combines statistics, human-computer interaction, and semantic technologies, to support knowledge-based exploration and visualization of scholarly data. In this paper we focus on the functionalities provided by Rexplore for visualizing research trends and we use as an example research in Social Networks, which has experienced dramatic growth in the years 2000-2010.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.