Abstract

Partition coefficients are important parameters for measuring the concentration of chemicals by passive sampling devices. Considering the wide application of the polyurethane foam (PUF) in passive air sampling, an attempt for developing several quantitative structure-property relationship (QSPR) models was made in this work, to predict PUF-air partition coefficients (KPUF-air) using linear (multiple linear regression, MLR) and non-linear (artificial neural network, ANN and support vector machine, SVM) methods by machine learning. All of the developed models were performed on a dataset of 170 compounds comprising 9 distinct classes. A series of statistical parameters and validation results showed that models had good prediction ability, robustness and goodness-of-fit. Furthermore, the underlying mechanisms of molecular descriptors emphasized that ionization potential, molecular bond, hydrophilicity, size of molecule and valence electron number had dominating influence on the adsorption process of chemicals. Overall, the obtained models were all established on the extensive applicability domains, and thus can be used as effective tools to predict the KPUF-air of new organic compounds or those have not been synthesized yet which, in turn, could help researchers better understand the mechanistic basis of adsorption behavior of PUF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.