Abstract

Marginal donor kidneys are more likely to develop ischemia-reperfusion injury (IRI), resulting in inferior long-term outcomes. Perfusion techniques are used to attenuate IRI and improve graft quality. However, machine perfusion is still in its infancy, and more research is required for optimal conditions and potential repairing therapies. Experimental machine perfusion using porcine kidneys is a great way to investigate transplant-related IRI, but these experiments are costly and time-consuming. Therefore, an intermediate model to study IRI would be of great value. We developed a precision-cut kidney slice (PCKS) model that resembles ischemia-reperfusion and provides opportunities for studying multiple interventions simultaneously. Porcine kidneys were procured from a local slaughterhouse, exposed to 30 min of warm ischemia, and cold preserved. Subsequently, PCKS were prepared and incubated under various conditions. Adenosine triphosphate (ATP) levels and histological tissue integrity were assessed for renal viability and injury. Slicing did not influence tissue viability, and PCKS remained viable up to 72 h incubation with significantly increased ATP levels. Hypothermic and normothermic incubation led to significantly higher ATP levels than baseline. William’s medium E supplemented with Ciprofloxacin (and Amphotericin-B) provided the most beneficial condition for incubation of porcine PCKS. The porcine PCKS model can be used for studying transplant IRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.