Abstract

A solar-powered unmanned aerial vehicle generally encounters the problems that it has low Reynolds effects and is highly susceptible to gust response. Therefore, the grid velocity method was used to analyze the gust response characteristics of the airfoil FX63-137 under low Reynolds number. First, the reliability of the numerical simulation method at low Reynolds number and grid velocity method were verified with experimental data. Second, the gust response characteristics of FX63-137 airfoil under different Reynolds numbers and different angles of attack were numerically simulated. The results show that the magnitude of incremental lift coefficient in gust response decreases because laminar separation bubbles are complete as the Reynolds number decreases at a small angle of attack. They also show that laminar separation bubbles have an unloaded effect on gust response. At a high angle of attack, as the airfoil enters into stalling stage, the incremental lift coefficient begins to decline before reaching maximum gust disturbance. Because of the stalling of the airfoil, when the gust disappears, the incremental lift coefficient has a negative value. What's more, although the effective angle of attack is equal, the flow structure of the airfoil is somewhat different in upstream and downstream moments. Compared with the downstream moment, the incremental lift coefficient at the upstream moment is generally larger, and the incremental lift coefficient curve of the airfoil forms a non-closed hysteresis loop.

Highlights

  • 西北工业大学学报 Journal of Northwestern Polytechnical University https: / / doi.org / 10.1051 / jnwpu / 20193710177

  • The reliability of the numerical simulation method at low Reynolds number and grid velocity method were verified with experimental data

  • The results show that the magnitude of incremental lift coefficient in gust response de⁃ creases because laminar separation bubbles are complete as the Reynolds number decreases at a small angle of at⁃ tack

Read more

Summary

Introduction

西北工业大学学报 Journal of Northwestern Polytechnical University https: / / doi.org / 10.1051 / jnwpu / 20193710177 方法对阵风响应现象进行了广泛的研究。 Dillsaver 等[3] 对柔性飞机的结构刚度对阵风响应特性的影 响进行了研究,研究表明“ Helios” 这种大柔性飞机 在阵风的影响下,其很容易进入动力学不稳定状态。 Patil[4] 分别采用了时域与频域的方法对大柔性飞机 的阵风响应进行了研究。 Zaide[5] 将网格速度法引 入来模拟阵风影响,并将非定常气动力降阶方法与 传统 CFD 方法进行比较,结果表明在亚声速与跨声 速阶段,降阶方法具有较好的计算精度。 在国内,詹 浩等[6] 采用模态叠加法对弹性飞机的阵风响应进 行了研究。 许晓平等[7] 通过设计舵面与阵风的同 期运动,对阵风减缓方法进行了研究。 综上所述,国 内外相关学者已经对阵风响应进行了比较系统的研 究,也取得了大量的成果。 但是,他们对阵风响应的 研究重点主要集中在非线性结构模型的准确建立 上,所建立的气动力模型通常采取解析方法或偶极 子法等简化的快速计算理论。 这些简化的气动模型 无法对低雷诺数下由于层流分离泡而出现的气动特 性恶化、气动力非线性等现象做出模拟。 在低雷诺 数条件下, 翼型的阵风响应由于低雷诺数效应[ 8⁃9] 而存在载荷卸载的现象,其升力系数的响应峰值要 大大低于常规雷诺数翼型。 对结构设计具有重要的 指导作用。 与常规雷诺数下的气动响应有很大的不 同。 因此很有必要采用精确的 CFD 方法,对低雷诺 数条件下的翼型阵风响应特性进行研究。 0 × 105 时,低雷诺数效应显著有关。 在 雷诺数在 10 万量级时,低雷诺数所造成的气动力非 线性现象显著,气动特性恶化,升力线斜率也随之减 小。 而随着雷诺数的增大,气动特性得到改善,翼型 升力线斜率随之增大。 故随着雷诺数的增大,升力 系数响应幅值也在同时增大。 而采用 ONERA 算法 所得出的升力系数响应由于无法考虑雷诺数对翼型 气动特性的影响,故其计算的升力系数较为理想,整 个响应幅值要远大于采用 CFD 计算所得到响应值。 2.2 翼型阵风响应流场特征分析

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call