Abstract
Named Entity Recognition (NER) is a fundamental task in natural language processing that aims to identify and categorize named entities within unstructured text. In recent years, with the development of deep learning techniques, pre-trained language models have been widely used in NER tasks. However, these models still face limitations in terms of their scalability and adaptability, especially when dealing with complex linguistic phenomena such as nested entities and long-range dependencies. To address these challenges, we propose the MacBERT-BiGRU-Self Attention-Global Pointer (MB-GAP) model, which integrates MacBERT for deep semantic understanding, BiGRU for rich contextual information, self-attention for focusing on relevant parts of the input, and a global pointer mechanism for precise entity boundary detection. By optimizing the number of attention heads and global pointer heads, our model achieves an effective balance between complexity and performance. Extensive experiments on benchmark datasets, including ResumeNER, CLUENER2020, and SCHOLAT-School, demonstrate significant improvements over baseline models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.