Abstract

In this research, we perform a theoretical interpretation of molecular and electronic properties of reduced graphene oxide (rGO) nanoflakes through the density functional theory. Here, two pristine graphene nanoflake systems were passivated by hydrogen atoms at their edges, armchair (C58H20) and zigzag (C54H20); besides, we implemented 12 rGO systems with a range of low oxide coverage (1, 3, and 4%). Computational calculations were carried out employing the functional hybrid B3LYP and the basis 6-31G(d, p) and 6-311G(d, p) levels of theory. We brought the proposed molecular structures to a stable minimum. We determined the global reactivity descriptors through chemical potential, hardness, softness, and index of electrophilicity. Besides, the maps of electrostatic potential were generated. We found that the hydroxyl and epoxy functional groups dope the graphene molecule in p-type and n-type forms, respectively. In addition, we could attribute the increases of the oxide coverage and the chemical potential to the softness of the molecule. These results suggest that structures with this type of doping can help in developing advanced electronics of sensors and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.