Abstract
Powdery mildew is a pervasive fungal disease causing significant economic losses globally. Continuous use of synthetic fungicides has led to environmental concerns and resistant fungal strains. This study explores marine-derived cephalostatins from the South African Natural Compounds Database as novel fungicidal agents for managing powdery mildew. Using molecular docking techniques, we investigated the interaction between selected cephalostatins and critical proteins involved in powdery mildew pathogenesis. Compounds were selected based on drug-likeness and bioactivity, adhering to Lipinski’s Rule of Five. Molecular interactions, binding affinities, and stability were analysed using AutoDock Vina, PyMOL, and Discovery Studio. Cephalostatin 17 exhibited the highest binding affinity (−10.4 kcal/mol), indicating strong potential for inhibiting fungal growth through significant hydrogen bonding and hydrophobic interactions. The study’s primary limitation is the reliance on computational predictions, necessitating experimental validation. Cephalostatin 17 stands out as a promising candidate for sustainable agricultural practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.