Abstract
Purposeto explore lower limb muscle activity concerning limb dominance, as well as variations in force and power during the standing up and sitting down phases of the instrumented sit-to-stand-to-sit test in sedentary individuals, across isokinetic and isotonic modalities. Methods33 sedentary individuals underwent testing using a functional electromechanical dynamometer in both isokinetic and isotonic modes, accompanied by surface electromyography. ResultsIn the isokinetic mode, the non-dominant gastrocnemius medialis and vastus medialis exhibited significantly (p < 0.05) higher muscle activity values during the standing up and sitting down phase compared to dominant counterparts. In the isotonic mode standing up phase, significant differences in muscle activity were noted for non-dominant gastrocnemius medialis, vastus medialis, and biceps femoris compared to their dominant counterparts. The sitting down phase in isotonic mode showed higher muscle activity for non-dominant vastus medialis compared to dominant vastus medialis. Regard to performance outcomes, significantly lower (p < 0.0001) values were observed for standing up (12.7 ± 5.1 N/kg) compared to sitting down (15.9 ± 6.1 N/kg) peak force, as well as for standing up (18.7 ± 7.8 W/kg) compared to sitting down (25.9 ± 9.7 W/kg) peak power in isokinetic mode. In isotonic mode, lower values were found for sitting down (6.5 (6.3–7.1) N/kg) compared to standing up (7.8 (7.3–8.9) N/kg) peak force and for sitting down (18.5 (13.2–21.7) W/kg) compared to standing up (33.7 (22.8–41.6) W/kg) peak power. ConclusionsLimb dominance influences lower-limb muscle activity during the instrumented sit-to-stand-to-sit test, and the choice of testing mode (isokinetic or isotonic) affects muscle engagement and performance outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.