Abstract

This study aimed to identify the effect of anti-gravity treadmill training on isokinetic lower-limb muscle strength and muscle activities in patients surgically treated for a hip fracture. A total of 34 participants were randomly assigned into two groups: anti-gravity treadmill training group (n = 17) and control group (n = 17). The isokinetic muscle strength and endurance of hip flexor and extensor and the activities of the vastus lateralis (VL), vastus medialis (VM), gluteus maximus (GM), and gluteus medialis (Gm) muscles were measured before and after 4 weeks of the interventions. Significant improvements were observed in isokinetic muscle strength and endurance of hip flexors and extensors in both groups (p < 0.05); however, no significant differences were observed between the groups (p > 0.05) except for muscle strength of the hip extensor (d = 0.78, p = 0029). Statistically significant increases in the muscle activity of VL, VM, GM, and Gm were found before and after the intervention (p < 0.05), and significant differences in muscle activities of GM (d = 2.64, p < 0.001) and Gm (d = 2.59, p < 0.001) were observed between the groups. Our results indicate that both groups showed improvement in muscle strength, endurance, and activities after the intervention. Additionally, anti-gravity treadmill training improved significantly more muscle strength at 60°/s of the hip extensor and gluteus muscle activities than conventional therapy, which may be appropriate for patients with hip fracture surgery.

Highlights

  • 1.35 million people die annually in road traffic crashes, and millions more suffer from injuries caused by that [1]

  • Anti-gravity treadmill training improved significantly more muscle strength at 60◦ /s of the hip extensor and gluteus muscle activities than conventional therapy, which may be appropriate for patients with hip fracture surgery

  • No significant difference was found between the groups in the homogeneity test (p > 0.05)

Read more

Summary

Introduction

1.35 million people die annually in road traffic crashes, and millions more suffer from injuries caused by that [1]. Of patients injured in a road traffic crash, around 19–35.4% have femoral fractures [2]. Femoral fractures occur as a result of relatively strong forces in events such as falls and traffic accidents, because of the specificity of the anatomical structure of the femur bone. The quadriceps, which is not able to bear weight after surgery, shows muscle loss and weakness, especially within the first 5 days, postoperatively. Postoperative functional limitations due to soft tissue defects including hip abductor, flexor muscles, and extensor cause limited gait function with decreased muscle weakness and pain [4,5]. The vastus medialis (VM) is physiologically the weakest muscle and

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call