Abstract

The digital reconstruction of a neuron is the most direct and effective way to investigate its morphology. Many automatic neuron tracing methods have been proposed, but without manual check it is difficult to know whether a reconstruction or which substructure in a reconstruction is accurate. For a neuron’s reconstructions generated by multiple automatic tracing methods with different principles or models, their common substructures are highly reliable and named individual motifs. In this work, we propose a Vaa3D-based method called Lamotif to explore individual motifs in automatic reconstructions of a neuron. Lamotif utilizes the local alignment algorithm in BlastNeuron to extract local alignment pairs between a specified objective reconstruction and multiple reference reconstructions, and combines these pairs to generate individual motifs on the objective reconstruction. The proposed Lamotif is evaluated on reconstructions of 163 multiple species neurons, which are generated by four state-of-the-art tracing methods. Experimental results show that individual motifs are almost on corresponding gold standard reconstructions and have much higher precision rate than objective reconstructions themselves. Furthermore, an objective reconstruction is mostly quite accurate if its individual motifs have high recall rate. Individual motifs contain common geometry substructures in multiple reconstructions, and can be used to select some accurate substructures from a reconstruction or some accurate reconstructions from automatic reconstruction dataset of different neurons.

Highlights

  • The structure and function of neurons are very important for understanding the working mechanism of brains

  • Many automatic methods and tools have been developed for digital reconstruction of neurons, such as automatic contour extraction [2], APP1 [3, 4], APP2 [5], MOST [6], SmartTracing [7], Ray casting [8], tTuFF [9], Rivulet [10], SparseTracer [11], M-AMST [12], Ensemble Neuron Tracer [13], Rivulet2 [14], FMST

  • We propose a method to find individual motifs in a specified objective reconstruction of a neuron, which makes use of local alignment in BlastNeuron and is called Lamotif

Read more

Summary

Introduction

The structure and function of neurons are very important for understanding the working mechanism of brains. Many automatic methods and tools have been developed for digital reconstruction of neurons, such as automatic contour extraction [2], APP1 [3, 4], APP2 [5], MOST [6], SmartTracing [7], Ray casting [8], tTuFF [9], Rivulet [10], SparseTracer [11], M-AMST [12], Ensemble Neuron Tracer [13], Rivulet2 [14], FMST BigNeuron incorporated around 30 automatic tracing algorithms, which were implemented on a set of 30,000 + multidimensional neuronal image stacks and generated more than one million morphological reconstructions of neurons from different species (https://alleninstitute.org/bigneuron)

Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.