Abstract

Synchronization of spikes carried by the visual streams is strategic for the proper binding of cortical assemblies, hence for the perception of visual objects as coherent units. Perception of a complex visual scene involves multiple trains of gamma oscillations, coexisting at each stage in visual and associative cortex. Here, we analyze how this synchrony is managed, so that the perception of each visual object can emerge despite this complex interweaving of cortical activations. After a brief review of structural and temporal facts, we analyze the interactions which make the oscillations coherent for the visual elements related to the same object. We continue with the propagation of these gamma oscillations within the sensory chain. The dominant role of the pulvinar and associated reticular thalamic nucleus as cortical coordinator is the common thread running through this step-by-step description. Synchronization mechanisms are analyzed in the context of visual perception, although the present considerations are not limited to this sense. A simple experiment is described, with the aim of assessing the validity of the elements developed here. A first set of results is provided, together with a proposed method to go further in this investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.