Abstract
AbstractIn this paper, we examine the cleavage fracture anisotropy in tantalum carbides, namely, TaC, α‐Ta2C, and ζ‐Ta4C3 − x, using density functional theory (DFT) calculations. Our investigation identifies the presence of multiple low‐energy cleavage planes indicating multiple potential pathways for crack propagation in these ceramics, even the low symmetry compounds. The anisotropy characteristics of cleavage fractures exhibited by α‐Ta2C and ζ‐Ta4C3 − x closely align with the intrinsic fracture anisotropy observed in TaC. Notably, there exist at least three pyramidal planes in ζ‐Ta4C3 − x whose cleavage energies are less than those of the carbon‐depleted basal planes, previously reported to have the lowest cleavage energy. The observed preference in experiments for cleavage along carbon‐depleted basal planes, exclusive of other identified low‐energy planes, points to factors beyond cleavage energy influencing cleavage plane preference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.