Abstract
We study the profiles of electro-optic effect (EOE) and third-order nonlinear optical susceptibility (TONOS) of impurity doped GaAs quantum dots (QDs) under the combined influence of hydrostatic pressure (HP) and temperature (T) taking into account the presence of Gaussian white noise. Noise has been introduced to the system additively and multiplicatively. The doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is elegantly reflected through prominent change of peak shift (blue/red) and variation of peak height (increase/ıdecrease) of above nonlinear optical (NLO) properties as temperature and pressure are varied over a range. Interestingly, all such changes subtly depend on mode of application (additive/multiplicative) of noise. The noteworthy influence of the interplay between noise strength and its mode of application on the said NLO properties has also been critically scrutinized. The findings highlight remarkable role played by noise in tuning above NLO properties of doped QD system under the prominent presence of both hydrostatic pressure and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.