Abstract

Triple-negative breast cancer (TNBC) treatment is challenging due to its aggressive nature and heterogeneity of this type of cancer, characterized by various subtypes and intratumoral diversity. Doxorubicin (DOX) plays a crucial role in TNBC chemotherapy reducing the tumor size and improving patient survival. However, decreased drug uptake and increased resistance in specific cell subpopulations reduce the effectiveness of the treatment. This study explored the differences in DOX transport in MDA-MB-231 phenotypic sublines in cell monolayer (2D model) and cell spheroids (3D cultures). Cell spheroids were formed using magnetic 3D Bioprinting method. DOX transport into cells and spheroids was evaluated using fluorescence microscopy after different incubation durations with DOX in normoxia and hypoxia. In hypoxia, DOX transport into cells was 2.5 to 5-fold lower than in normoxia. The subline F5 monolayer-cultured cells exhibited the highest DOX uptake, while subline H2 cells showed the lowest uptake in normoxia and hypoxia. In 3D cultures, DOX transport was up to 2-fold lower in spheroids formed from subline H2 cells. Spheroids from subline D8 and MDA-MB-231 parent cells had the highest DOX uptake. A correlation was observed between the characteristics of the cells and their resistance to anticancer drugs. The results indicate that different cancer cell subpopulations in tumours due to differences in drug uptake could significantly impact treatment efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.