Abstract
Tourism destination image (TDI) in the dark tourism context is considered to be a complex and controversial, yet rarely studied issue in the literature. This study selected three types of dark tourism destinations in China to explore TDI through analyzing user generated photos via DeepSentiBank, a method based on deep convolutional neural networks. Based on a content analysis, this study identified 11 categories of cognitive images, and found that memorial space & sculptures, commemorative symbols, and historical events & place functions were the distinctive categories of cognitive images. Based on a sentiment analysis, it revealed 24 emotions of affective images, and found that negative emotions weighed more heavily than positive emotions in dark tourism destinations. Complex network analysis further revealed multiple inter-linked relationships between cognitive and affective attributes. This study contributes to photo-based sentiment analysis in tourism research, and the findings provide insights for TDI development and management for dark tourism destinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.