Abstract

ABSTRACTThe relative stabilities of the syn‐ and anti‐conformers of 72 molecules belonging to the XC(W)ZY type, with X, Y = F, Cl, Br and W, Z = O, S, Se, have been computed using the B3LYP/aug‐cc‐pVDZ approximation. The conformational preferences, represented by the energy differences between the two rotamers, exhibit a systematic trend in relation to both the halogen atoms and the chalcogen atoms. These computational predictions are in agreement with available experimental results. The NBO formalism was employed to assess the influence of both the conjugative and anomeric interactions on the relative energy of the conformers. It has been determined that the conjugative interaction provides a satisfactory explanation for the energy differences between rotamers. In contrast, the anomeric interactions favors the syn‐conformation in all cases. The relative stabilities between XC(W)ZY/YC(W)ZX and XC(W)ZY/XC(Z)WY constitutional isomers have also been computed and correlated with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.