Abstract

The increasing significance of carbon capture, utilization and storage (CCUS) as a climate mitigation strategy has underscored the importance of accurately evaluating subsurface reservoirs for CO2 sequestration. In this context, digital rock volumes, obtained through advanced imaging techniques such as micro-Xray computed tomography (MXCT), offer intricate insights into the porous and permeable structures of geological formations. This study presents a comprehensive methodology for assessing CO2 storage viability within Lithuanian deep saline aquifers, namely Syderiai and Vaskai, by utilizing petrophysical properties estimated from digital rock volumes of samples from analogous formations. It also demonstrates the potential of integrating advanced imaging techniques, machine learning, and numerical modeling for accurate assessment and effective management of subsurface CO2 storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.