Abstract

We have fabricated and characterized systems consisting of superconducting quantum bits (qubits) of the transmon type, coupled to a tunable transmission line resonator. The resonator consists of a superconducting quarter wavelength coplanar waveguide (CPW) resonator that is made tunable by terminating the transmission line to ground through a superconducting quantum interference device (SQUID). Here we present measurements on two devices where we observe Rabi oscillations as we drive the qubit, and vacuum Rabi splitting both as we tune the qubits into resonance with the resonator and as we tune the resonator into resonance with the qubits. We also observe coherent interaction between two resonant qubits. In addition, we demonstrate that we can calculate the response very accurately using a multilevel Hamiltonian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call