Abstract

Biorenewable energy and chemicals hold great promise for a greener, more sustainable future. Biomass is organic materials that can be used to generate electricity and gas in the form of bioenergy. Catalysis is required to convert the biomass into a useful form. At the Saito Research Group in the Noyori Laboratory at the Graduate School of Science, Nagoya University, Japan, Professor Susumu Saito and the team are engaged in the design and development of catalysts for exactly this. In one line of research, the team is developing upcycling catalysts for highly oxidised chemical compounds (HOCs). The idea is that these catalysts can be used to quickly and efficiently synthesise high-value-added organic molecules from carbon resources. In another project, the researchers are exploring organic synthesis based on one electron transfer from H2 or H2O using molecular and semiconductor photocatalysis. One electron (radical) species (OES) such as hydrogen atom (H•) can be produced from the homolytic cleavage of chemical bonds of H2 or H2O, occurring by visible/near-UV light energy inducing photo-excited states of tailored homogeneous and heterogeneous (semiconductor) catalysts. These OESs can be used in addition reactions and H-abstraction reactions to generate carbon-centred radical species and achieve artificial photosynthesis directed toward selective organic synthesis (APOS). A key focus for the team is on molecular metal catalysis. They designed novel (PNNP)M catalysts, with the PNNP representing two-phosphine and two-nitrogen coordinative atoms and the M representing metals, from which they derived robust reduction/dehydration catalysts with catalytic activity that can be sustained for a long period of time under visible light, electric and heat energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call