Abstract

The advancement of an intelligent automobile sound switching system has the potential to elevate the market standing of automotive products, with the pivotal prerequisite being the selection of automobile sounds based on the driver’s subjective perception. The subjective responses of diverse individuals to sounds can be objectively manifested through EEG signals. Therefore, EEG signals are employed herein to attain the recognition of automobile sounds. A subjective evaluation and EEG signal acquisition experiment are designed involving the stimulation of three distinct types of automobile sounds, namely comfort, power, and technology sounds, and a comprehensive database of EEG signals corresponding to these three sound qualities is established. Then, a specific transfer learning model based on a convolutional neural network (STL-CNN) is formulated, where the method of training the upper layer parameters with the fixed bottom weights is proposed to adaptively extract the EEG features related to automobile sounds. These improvements contribute to improving the generalization ability of the model and realizing the recognition of automobile sounds fused with EEG signals. The results of the comparison with traditional support vector machine (SVM) and convolutional neural network (CNN) models demonstrate that the accuracy of the test set of the STL-CNN model reaches 91.5%. Moreover, its comprehensive performance, coupled with the ability to adapt to individual differences, surpasses that of both SVM and CNN models. The demonstrated method in the recognition of automobile sounds based on EEG signals is of significance for the future implementation of switching driving sound modes fused with EEG signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call