Abstract
In this paper, we present a novel approach for solving a class of fractional partial differential equations (FPDEs) and their inverse problems using deep neural networks (DNNs). Our proposed framework utilizes the discrete Caputo fractional derivative method to approximate fractional partial derivatives, while leveraging automatic differentiation of neural networks to obtain integer derivatives. This approach offers several advantages, including avoiding the direct solution of the original FPDEs and overcoming the limitations faced by traditional numerical methods in handling FPDEs. To validate our approach, we provide numerical examples with known analytical solutions, accompanied by graphical and numerical results. Our findings demonstrate that the proposed method is easily implementable, exhibits fast convergence, robustness, and effectiveness in solving multidimensional FPDEs and their inverse problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.