Abstract

Mechanical and Corrosion characteristics of composite materials made from Aluminum alloys (AA) 6063 supplanting as the material of choice for automotive, aerospace, and marine applications by systematically varying ceramic reinforcements developed through controlled stir cast technique ensuring uniform dispersion are explored. The hardness, density, impact and tensile strength, corrosion resistance, and microstructural characteristics of Aluminum Matrix Composites (AMCs) reinforced with titanium diboride (TiB2) at 7.5, 10, and 12.5 wt% and chromium oxide (Cr2O3) at 3, 6, and 9 wt% were assessed according to ASTM standards. The microstructural analysis revealed a reduction in the growth of reinforcement clusters within acceptable limits. The addition of reinforcements to the matrix resulted in improved tensile strength, ranging from 124.6 to 188.7 MPa, and hardness, increasing from 71.5 to 144.32 VHN. This improvement is attributed to the strengthening or load transfer mechanism facilitated by the reinforcements. Additionally, the impact strength of the composites increased from 11.845 to 21.16 J, while the density showed slight variations. Consistent corrosion tests demonstrated that the chemical and interfacial interactions between the matrix material and the reinforcements significantly enhanced the corrosion resistance, reducing the corrosion rate from 570 to 499 mm/year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.