Abstract
The advent of the Internet of Things (IoT) has accelerated the pace of economic development across all sectors. However, it has also brought significant challenges to traditional human resource management, revealing an increasing number of problems and making it unable to meet the needs of contemporary enterprise management. The IoT has brought numerous conveniences to human society, but it has also led to security issues in communication networks. To ensure the security of these networks, it is necessary to integrate data-driven technologies to address this issue. In response to the current state of human resource management, this paper proposes the application of IoT technology in enterprise human resource management and combines it with radial basis function neural networks to construct a model for predicting enterprise human resource needs. The model was also experimentally analyzed. The results show that under this algorithm, the average prediction accuracy for the number of employees over five years is 90.2 %, and the average prediction accuracy for sales revenue is 93.9 %. These data indicate that the prediction accuracy of the model under this study's algorithm has significantly improved. This paper also conducted evaluation experiments on a wireless communication network security risk prediction model. The average prediction accuracy of four tests is 91.21 %, indicating that the model has high prediction accuracy. By introducing data-driven technology and IoT applications, this study provides new solutions for human resource management and communication network security, promoting technological innovation in the fields of traditional human resource management and information security management. The research not only improves the accuracy of the prediction models but also provides strong support for decision-making and risk management in related fields, demonstrating the great potential of big data and artificial intelligence technology in the future of enterprise management and security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.