Abstract

The mechanisms of action (MoA) have been proposed to further reduce the O2 dependence of photodynamic therapy (PDT) significantly. However, the triplet states of traditional photosensitizers are relatively short and also are easily deactivated by the quenching of H2O or O2. This is not conducive for the electron transfer in the photocatalytic process and poses a great obstacle to establish the MoA. Therefore, we selected and synthesized a zirconium(IV) complex (Zr(MesPDPPh)2) reported by Milsmann to address this issue. The specific symmetric and intact geometry endowed Zr(MesPDPPh)2 NPs with long-lived triplet excited state (τ = 350 μs), desired sensitized ability, and improved anti-interfering performance on O2, which was matched with the requirements of photoredox catalyst significantly. The results showed that while PDT (I) and PDT (II) could be achieved simultaneously by leveraging Zr(MesPDPPh)2 NPs, it also could be served as a rare example of thermally activated delayed fluorescence (TADF)-based photoredox catalyst to implement the MoA of PDT. It involved the oxidation of NADH and the establishment of catalytic cycle collaborating by O2 and cytochrome c (cyt c) in normoxia and hypoxia, respectively. As a result, the oxygen-free PDT and tumor-growth inhibition was realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.