Abstract
Thermally activated delayed fluorescence (TADF) materials with extremely small singlet-triplet energy offsets have opened new horizons for the development of metal-free photosensitizers for photodynamic therapy (PDT) in recent years. However, the exploration of near-infrared (NIR) TADF emitters for efficient two-photon-excited (TPE) PDT is still a formidable challenge, thus it has not been reported yet. In this study, purely organic photosensitizers (PSs) based on the TADF nanoparticles (NIR-TADF NPs) are designed for efficient TPE-PDT, which show excellent singlet oxygen generation ability. Thanks to the intrinsic two-photon excitation and NIR emission characteristics, the NIR-TADF NPs demonstrate promising potential in both single-photon-excited (SPE) and TPE NIR imaging. More importantly, the anti-tumor efficiency and biosafety of TADF-based PSs at the small animal level are confirmed in A549 tumor xenograft models under TPE laser irradiance, which will facilitate the practical biomedical applications of TADF materials. This work not only provides a promising strategy to develop metal-free PSs, but also expands the applied scope of TADF-based nanotherapeutics and advances their possible clinical translation in cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.