Abstract

Idiopathic pulmonary fibrosis (IPF), a type of interstitial lung disease (ILD), is a chronic disease with an unknown etiology. The occurrence of lung cancer (LC) is one of the main causes of death in patients with IPF. However, the pathogenesis driving these malignant transformations remains unclear; therefore, this study aimed to identify the shared genes and functional pathways associated with both disease conditions. Data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. To identify overlapping genes in both diseases, the "limma" package in R software and weighted gene coexpression network analysis (WGCNA) were used. Venn diagrams were used to obtain the shared genes. The diagnostic value of the shared genes was assessed using receiver operating characteristic (ROC) curve analysis. Gene Ontology (GO) term enrichment was performed on the shared genes between lung adenocarcinoma (LUAD) and IPF, and the genes were also functionally enriched using Metascape. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Finally, the link between shared genes and common antineoplastic medicines was investigated using the CellMiner database. The coexpression modules associated with LUAD and IPF were discovered using WGCNA, and 148 genes were found to overlap. In addition, 74 upregulated and 130 downregulated overlapping genes were obtained via differential gene analysis. Functional analysis of the genes revealed that these genes are primarily engaged in extracellular matrix (ECM) pathways. Furthermore, COL1A2, POSTN, COL5A1, CXCL13, CYP24A1, CXCL14, and BMP2 were identified as potential biomarkers in patients with LUAD secondary to IPF showing good diagnostic values. ECM-related mechanisms may be the underlying link between LC and IPF. A total of 7 shared genes were identified as potential diagnostic markers and therapeutic targets for LUAD and IPF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call