Abstract

Recent experiments have shown that the time dependence of fluorescence Stokes shift of a chromophore is substantially different when the chromophore is located in a molten globule (MG) state and in the native state of the same protein. To understand the origin of this difference, particularly the role of water in the differential solvation of the protein in the native and the MG states, we have carried out fully atomistic molecular dynamics simulations with explicit water of a partially unfolded MG state of the protein HP-36 and compared the results with the solvation dynamics of the protein in the folded native state. It is observed that the polar solvation dynamics of the three helical segments of the protein is influenced in a nonuniform heterogeneous manner in the MG state. While the equilibrium solvation time correlation function for helix-3 has been found to relax faster in the MG state as compared to that in the native state, the decay of the corresponding function for the other two helices slows down in the MG state. A careful analysis shows that the origin of such heterogeneous relative solvation behavior lies in the differential location of the polar probe residues and their exposure to bulk solvent. We find a significant negative cross-correlation between the contribution (to the solvation energy of a tagged amino acid residue) of water and the other groups of the protein, indicating a competing role in solvation. The sensitivity of solvation dynamics to the secondary structure and the immediate environment can be used to discriminate the partially unfolded and folded states. These results therefore should be useful in explaining recent solvation dynamics experiments on native and MG states of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.