Abstract

We have reported a simple method for synthesizing polythiophene/graphene, poly(methyl methacrylate)/graphene and polythiophene- co-poly(methyl methacrylate)/graphene nanocomposite via a solution method. The polythiophene was prepared by in-situ chemical oxidative polymerization using ferric chloride hexahydrate. Besides, simple in-situ conversion of graphite to graphene was attained in aprotic solvent via sonication. The physio-chemical nanocomposite properties were studied to analyze structural, morphological, thermal and electrical properties. Fourier transform infrared spectroscopy analysis corroborated the structures of polythiophene/graphene and poly(methyl methacrylate)/graphene/graphene. Morphological analysis revealed good dispersion of graphene sheets in copolymer matrix having unique granular dispersion of polythiophene over the filler surface when compared with the microstructures of polythiophene/graphene and poly(methyl methacrylate)/graphene. The X-ray diffraction studies confirmed the polythiophene and poly(methyl methacrylate)/graphene amorphous structure, as well as graphitic structure in the nanocomposite. The thermal conductivity was found to increase for the copolymer series and was higher for poly(methyl methacrylate) -co-polythiophene/graphene 1.5 with 1.5 wt% loading (1.22 W/mK). Similarly, with the in-situ graphene loading the electrical conductivity was enhanced up to 2.4 × 10−3 S/cm (poly(methyl methacrylate) -co-polythiophene/graphene 1.5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.