Abstract
To enable smart transportation, a large volume of vehicular GPS trajectory data has been collected in the metropolitan-scale Shanghai Grid project. The collected raw GPS data, however, suffers from various errors. Thus, it is inappropriate to use the raw GPS dataset directly for many potential smart transportation applications. Map matching, a process to align the raw GPS data onto the corresponding road network, is a commonly used technique to calibrate the raw GPS data. In practice, however, there is no ground truth data to validate the calibrated GPS data. It is necessary and desirable to have ground truth data to evaluate the effectiveness of various map matching algorithms, especially in complex environments. In this paper, we propose truthFinder, an interactive map matching system for ground truth data exploration. It incorporates traditional map matching algorithms and human intelligence in a unified manner. The accuracy of truthFinder is guaranteed by the observation that a vehicular trajectory can be correctly identified by human-labeling with the help of a period of historical GPS dataset. To the best of our knowledge, truthFinder is the first interactive map matching system trying to explore the ground truth from historical GPS trajectory data. To measure the cost of human interactions, we design a cost model that classifies and quantifies user operations. Having the guaranteed accuracy, truthFinder is evaluated in terms of operation cost. The results show that truthFinder makes the cost of map matching process up to two orders of magnitude less than the pure human-labeling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.