Abstract

CycleGAN has been a benchmark in the style transfer field and various extensions with wide applications and excellent performance have been introduced in recent years, however, discussion about its architecture exploration which could enable us to further understand the concept of generative model is scarce. In this paper, several architectures referenced from classical convolutional neural networks are implemented into the generator and discriminator of the cycleGAN model, including AlexNet, DenseNet, GoogLeNet, and ResNet. Their feature extraction modes are imitated and modified into blocks to embed into the encoder part of the generator while the discriminator directly uses their model except it outputs a patch classification. In advance to mitigate the possible imbalance between generator and discriminator ability, a self-adjusting learning rate strategy based on the discriminator confidence is introduced. Multiple evaluation metrics are utilized to measure the performance of each model. Experimental results indicate an AlexNet-like architecture model could achieve a competitive performance than the baseline cycleGAN and present better fine details and high-frequency information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.