Abstract
The non-covalent whey protein isolate-proanthocyanidin (WPI-PC) complex was constructed and possessed superior anti-muscle attenuation activity in our previous study. While the non-covalent binding mechanism of WPI and PC remains unclear. The interaction mechanism of whey protein isolate (WPI) and proanthocyanidin (PC) was explored using multispectral analysis and molecular dynamics (MD) simulation. The results indicated that the non-covalent binding of PC and WPI led to fluorescence quenching, causing the conformational changes and microenvironment changes of WPI. The surface hydrophobicity of WPI-PC complex was reduced by 42.36 % compared with WPI (P < 0.05). The hydrogen bond and hydrophobic interaction were involved in the interaction between WPI and PC, and hydrogen bond played a dominant role. The WPI-PC complex was irregular and showed a smaller sheet structure. The PC and WPI remained a stable binding mainly through 15 key residues, especially the energy contribution of LEU 39. Additionally, the flexibility and fluctuation of individual amino acid residues in WPI were altered after binding to PC. It is hoped that this study could provide theoretical basis for the application of WPI and PC in functional foods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have