Abstract
In the present study, ternary deep eutectic solvent-based ultrasound-assisted extraction was developed for the efficient extraction of plantamajoside, acteoside, quercetin and kaempferol from Plantago asiatica L. Six kinds of choline chloride-based ternary deep eutectic solvents (TDESs) were prepared as potential extraction solutions. In order to obtain optimal extraction efficiency, a series of extraction conditions were investigated by single-factor test and orthogonal test. The extraction efficiency of choline chloride/lactic acid/ethylene glycol (ChCl-LA-EG) was much higher than that of other TDESs. ChCl-LA-EG-11 synthesised with choline chloride, lactic acid and ethylene glycol (1:4:2) was considered to have a higher extraction efficiency. The optimal ultrasound-assisted extraction conditions were as follows: water content in ChCl-LA-EG-11, 50%; extraction temperature, 70°C; ratio of solid/liquid, 20 mg/mL; ultrasonic power, 60 W; extraction time, 35 min; pH of the solution, 8. Under the optimal extraction conditions, the extraction efficiencies of plantamajoside, acteoside, quercetin and kaempferol were 3.83 ± 0.41, 4.23 ± 0.45, 0.56 ± 0.15 and 0.19 ± 0.08 mg/g, respectively. The extraction efficiency of the total target components was 9.21 ± 0.63 mg/g, which was much higher than that of conventional solvents (water, methanol, ethanol, 50% methanol, 50% ethanol). The target components were isolated efficiently from the TDES solution by an AB-8 macroporous resin column with a recovery rate of 95.6%. This study demonstrated that TDESs possessed excellent physical and chemical properties and had enormous potential for active component extraction of traditional Chinese medicinal materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.