Abstract

We investigate the efficient iterative solution of large-scale sparse linear systems on shared-memory multiprocessors. Our parallel approach is based on a multilevel ILU preconditioner which preserves the mathematical semantics of the sequential method in ILUPACK. We exploit the parallelism exposed by the task tree corresponding to the nested dissection hierarchy (task parallelism), employ dynamic scheduling of tasks to processors to improve load balance, and formulate all stages of the parallel PCG method conformal with the computation of the preconditioner to increase data reuse. Results on a CC-NUMA platform with 16 processors reveal the parallel efficiency of this solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.