Abstract
Recent research efforts have shown that Jacobi and block-Jacobi relaxation methods can be used as an effective and highly parallel approach for the solution of sparse triangular linear systems arising in the application of ILU-type preconditioners. Simultaneously, a few independent works have focused on designing efficient high performance adaptive-precision block-Jacobi preconditioning (block-diagonal scaling), in the context of the iterative solution of sparse linear systems, on manycore architectures. In this paper, we bridge the gap between relaxation methods based on regular splittings and preconditioners by demonstrating that iterative refinement can be leveraged to construct a relaxation method from the preconditioner. In addition, we exploit this insight to construct a highly-efficient sparse triangular system solver for graphics processors that combines iterative refinement with the block-Jacobi preconditioner available in the Ginkgo library.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.