Abstract

Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in many computer vision tasks over the years. However, this comes at the cost of heavy computation and memory intensive network designs, suggesting potential improvements in efficiency. Convolutional layers of CNNs partly account for such an inefficiency, as they are known to learn redundant features. In this work, we exploit this redundancy, observing it as the correlation between convolutional filters of a layer, and propose an alternative approach to reproduce it efficiently. The proposed `LinearConv' layer learns a set of orthogonal filters, and a set of coefficients that linearly combines them to introduce a controlled redundancy. We introduce a correlation-based regularization loss to achieve such flexibility over redundancy, and control the number of parameters in turn. This is designed as a plug-and-play layer to conveniently replace a conventional convolutional layer, without any additional changes required in the network architecture or the hyper-parameter settings. Our experiments verify that LinearConv models achieve a performance on-par with their counter-parts, with almost a 50% reduction in parameters on average, and the same computational requirement and speed at inference. Source is available at https://github.com/kkahatapitiya/LinearConv.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.