Abstract

Reducing voltage is a traditional strategy for designing and activating low-power mode of integrated systems. Low voltages otherwise make slower components that can cause critical timing violations in synchronous circuits. On the contrary, asynchronous circuits, which have no clock constraints, are capable to adapt to delay variations. This paper presents the minimum operation voltages of the fundamental asynchronous components, the C-elements, on recent FD-SOI 28-nm technology. Results show that conventional scheme of the C-element can reduce power by a factor of 34 for the less consuming scheme if operating at minimum voltage of 0.28V instead of nominal 1.00V. In addition, a low-voltage conventional C-element on FD-SOI 28-nm with RVT transistor consumes about one-third of the power of its counterpart on bulk 65-nm CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.