Abstract
Flash memory has been widely deployed in modern storage systems. However, the density improvement and technology scaling would decrease its endurance and I/O performance, which motivates the search to improve flash performance and reduce cell wearing. Wearing reduction can be achieved by lowering the threshold voltages, but at the cost of slower reads. In this paper, the access hotness characteristics are exploited for read performance and endurance improvement. First, with the understanding of the reliability characteristics of flash memory, the relationship among flash cell wearing, read latency and bit error rate is introduced. Then, based on the hotness information provided by buffer management, the threshold voltages of a cell for write-hot data are decreased for wearing reduction, while these for read-hot data are increased for read latency reduction. We demonstrate analytically through simulation that the proposed technique achieves significant endurance and read performance improvements without sacrificing the write throughput performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.