Abstract

This paper reports on the study and characterization of the non-linear regime of two CMOS-NEMS flexural resonators electrically transduced for mechanical memory applications. A cantilever and a clamped–clamped beam nanoelectromechanical resonators have been monolithically fabricated using a commercial CMOS technology. An increase of the excitation voltage has forced the NEMS to present a non-linear resonant behavior. It has been demonstrated how this bistable NEMS response allows the implementation of a dynamic logic memory device where the control of the switching between the two states is performed through an amplitude modulation of the driving signal. Voltages needed for memory operation in the mV range and with higher difference between “high” and “low” values than the state of the art, together with the NEMS top-down fabrication in CMOS constitutes a promising alternative for operative mechanical memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.