Abstract

In earlier papers, the authors have used the transmutation method to find solutions to Volterra integral or differ-integral equations of second kind, involving Erdélyi-Kober fractional integration operators (see [1,2]), as well as to dual integral equations and some Bessel-type differential equations (see [3,4]). Here we consider the so-called hyper-Bessel integral equations whose kernel-function is a rather general special function (a Meijer's G-function). Such an equation can be written also in a form involving a product of arbitrary number of Erdélyi-Kober integrals. By means of a Poisson-type transmutation, we reduce its solution to the well-known solution of a simpler Volterra equation involving Riemann-Liouville integration only. In the general case, the solution is found as a series of integrals of G-functions, easily reducible to series of G-functions. For particular nonhomogeneous (right-hand side) parts, this solution reduces to some known special functions. The main techniques are based on the generalized fractional calculus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call