Abstract

In this paper, we propose explicit multi-symplectic schemes for Klein–Gordon–Schrödinger equation by concatenating suitable symplectic Runge–Kutta-type methods and symplectic Runge–Kutta–Nyström-type methods for discretizing every partial derivative in each sub-equation. It is further shown that methods constructed in this way are multi-symplectic and preserve exactly the discrete charge conservation law provided appropriate boundary conditions. In the aim of the commonly practical applications, a novel 2-order one-parameter family of explicit multi-symplectic schemes through such concatenation is constructed, and the numerous numerical experiments and comparisons are presented to show the efficiency and some advantages of the our newly derived methods. Furthermore, some high-order explicit multi-symplectic schemes of such category are given as well, good performances and efficiencies and some significant advantages for preserving the important invariants are investigated by means of numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call