Abstract

New simulation approaches to evaluating path-dependent options without matrix inversion issues nor Euler bias are evaluated. They employ three main contributions: (1) stochastic approximation replaces regression in the LSM algorithm; (2) explicit weak solutions to stochastic differential equations are developed and applied to Heston model simulation; and (3) importance sampling expands these explicit solutions. The approach complements Heston [(1993) A closed-form solutions for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies 6, 327–343] and Broadie & Kaya [(2006) Exact simulation of stochastic volatility and other affine jump diffusion processes, Operations Research 54 (2), 217–231] by handling the case of path-dependence in the option’s execution strategy. Numeric comparison against standard Monte Carlo methods demonstrates up to two orders of magnitude speed improvement. The general ideas will extend beyond the important Heston setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.