Abstract

Heat kernel perturbation theory is a tool for constructing explicit approximation formulas for the solutions of linear parabolic equations. We review the crux of this perturbative formalism and then apply it to differential equations which govern the transition densities of several local volatility processes. In particular, we compute all the heat kernel coefficients for the CEV and quadratic local volatility models; in the later case, we are able to use these to construct an exact explicit formula for the processes' transition density. We then derive low order approximation formulas for the cubic local volatility model, an affine-affine short rate model, and a generalized mean reverting CEV model. We finally demonstrate that the approximation formulas are accurate in certain model parameter regimes via comparison to Monte Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.