Abstract
We give explicit, polynomial-time computable formulas for the number of integer points in any two-dimensional rational polygon. A rational polygon is one whose vertices have rational coordinates. We find that the basic building blocks of our formulas are Dedekind--Rademacher sums , which are polynomial-time computable finite Fourier series. As a by-product we rederive a reciprocity law for these sums due to Gessel, which generalizes the reciprocity law for the classical Dedekind sums. In addition, our approach shows that Gessel's reciprocity law is a special case of the one for Dedekind--Rademacher sums, due to Rademacher.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have