Abstract
Canoe modality in flatwater canoeing has a clear asymmetrical nature. This study aimed (1) to determine the magnitude and direction of neuromuscular properties, range of motion (ROM) and lower-limb strength asymmetries in female and male canoeists; (2) to establish sex-individualized asymmetry thresholds for canoeists’ neuromuscular properties, ROM and lower-limb strength; and (3) to determine the relationship of canoeists’ neuromuscular properties, ROM and lower-limb strength asymmetries with a specific canoe–dynamometer performance test. Twenty-one international canoeists were assessed through tensiomyography (TMG), ROM, lower-limb explosive strength, and a specific canoe incremental dynamometric test. The magnitude of asymmetry assessed through TMG and ROM was not modulated either by sex or performance level (international medal vs. non-medal). Females showed greater asymmetry than males on muscle tone of the erector spinae towards non-stroke side (22.75% vs. 9.72%) and the tibialis anterior (30.97% vs. 16.29%), and Fmax in explosive leg press (2.41% vs. 0.63%) towards the stroke side. International medalists showed greater asymmetry in semitendinosus contraction time towards non-stroke side (20.51% vs. 9.43%) and reached Vmax earlier in explosive leg press towards stroke side leg (19.20% vs. 9.40%). A greater asymmetry in Fmax and in Vm, and a smaller asymmetry in Tvmax and in leg press showed a small predictive capacity for canoeists’ performance on a specific canoe incremental dynamometry test. Reporting reference data from world-class canoeists’ asymmetries can be of great importance for coaches to periodically control lateral asymmetry.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have