Abstract

The problem of diffraction of an electromagnetic wave by a thick hologram grating can be solved by the famous Kogelnik's coupled-wave theory (CWT) to a very high degree of accuracy. We confirm this finding by comparing the CWT and the exact result for a typical example and propose an explanation in terms of perturbation theory. To this end we formulate the problem of diffraction as a matrix problem following similar well-known approaches, especially rigorous coupled-wave theory (RCWT). We allow for a complex permittivity modulation and a possible phase shift between refractive index and absorption grating and explicitly incorporate appropriate boundary conditions. The problem is solved numerically exact for the specific case of a planar unslanted grating and a set of realistic values of the material's parameters and experimental conditions. Analogously, the same problem is solved for a two-dimensional truncation of the underlying matrix that would correspond to a CWT approximation but without the usual further approximations. We verify a close coincidence of both results even in the off-Bragg region and explain this result by means of a perturbation analysis of the underlying matrix problem. Moreover, the CWT is found not only to coincide with the perturbational approximation in the in-Bragg and the extreme off-Bragg cases, but also to interpolate between these extremal regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.