Abstract
Machine learning and artificial intelligence are often described as “black boxes.” Traditional linear regression is interpreted through its marginal relationships as captured by regression coefficients. We show that the same marginal relationship can be described rigorously for any machine learning model by calculating the slope of the partial dependence functions, which we call the partial marginal effect (PME). We prove that the PME of OLS is analytically equivalent to the OLS regression coefficient. Bootstrapping provides standard errors and confidence intervals around the point estimates of the PMEs. We apply the PME to a hedonic house pricing example and demonstrate that the PMEs of neural networks, support vector machines, random forests, and gradient boosting models reveal the non-linear relationships discovered by the machine learning models and allow direct comparison between those models and a traditional linear regression. Finally we extend PME to a Shapley value decomposition and explore how it can be used to further explain model outputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.