Abstract

Four species of grass generate half of all human-consumed calories. However, abundant biological data on species that produce our food remain largely inaccessible, imposing direct barriers to understanding crop yield and fitness traits. Here, we assemble and analyse a continent-wide database of field experiments spanning 10 years and hundreds of thousands of machine-phenotyped populations of ten major crop species. Training an ensemble of machine learning models, using thousands of variables capturing weather, ground sensor, soil, chemical and fertilizer dosage, management and satellite data, produces robust cross-continent yield models exceeding R2 = 0.8 prediction accuracy. In contrast to 'black box' analytics, detailed interrogation of these models reveals drivers of crop behaviour and complex interactions predicting yield and agronomic traits. These results demonstrate the capacity of machine learning models to interrogate large datasets, generate new and testable outputs and predict crop behaviour, highlighting the powerful role of data in the future of food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.