Abstract

Respiratory diseases account for a significant proportion of deaths and disabilities across the world. Chest X-ray (CXR) analysis remains a common diagnostic imaging modality for confirming intra-thoracic cardiopulmonary abnormalities. However, there remains an acute shortage of expert radiologists, particularly in under-resourced settings, resulting in severe interpretation delays. These issues can be mitigated by a computer-aided diagnostic (CADx) system to supplement decision-making and improve throughput while preserving and possibly improving the standard-of-care. Systems reported in the literature or popular media use handcrafted features and/or data-driven algorithms like deep learning (DL) to learn underlying data distributions. The remarkable success of convolutional neural networks (CNN) toward image recognition tasks has made them a promising choice for automated medical image analyses. However, CNNs suffer from high variance and may overfit due to their sensitivity to training data fluctuations. Ensemble learning helps to reduce this variance by combining predictions of multiple learning algorithms to construct complex, non-linear functions and improve robustness and generalization. This study aims to construct and assess the performance of an ensemble of machine learning (ML) models applied to the challenge of classifying normal and abnormal CXRs and significantly reducing the diagnostic load of radiologists and primary-care physicians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.