Abstract

Interpretability, explainability, and transparency are key issues to introducing artificial intelligence methods in many critical domains. This is important due to ethical concerns and trust issues strongly connected to reliability, robustness, auditability, and fairness, and has important consequences toward keeping the human in the loop in high levels of automation, especially in critical cases for decision making, where both (human and the machine) play important roles. Although the research community has given much attention to explainability of closed (or black) prediction boxes, there are tremendous needs for explainability of closed-box methods that support agents to act autonomously in the real world. Reinforcement learning methods, and especially their deep versions, are such closed-box methods. In this article, we aim to provide a review of state-of-the-art methods for explainable deep reinforcement learning methods, taking also into account the needs of human operators—that is, of those who make the actual and critical decisions in solving real-world problems. We provide a formal specification of the deep reinforcement learning explainability problems, and we identify the necessary components of a general explainable reinforcement learning framework. Based on these, we provide a comprehensive review of state-of-the-art methods, categorizing them into classes according to the paradigm they follow, the interpretable models they use, and the surface representation of explanations provided. The article concludes by identifying open questions and important challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call